A unified framework for evaluating the risk of re-identification of text de-identification tools

Objectives

It has become regular practice to de-identify unstructured medical text for use in research using automatic methods, the goal of which is to remove patient identifying information to minimize re-identification risk. The metrics commonly used to determine if these systems are performing well do not accurately reflect the risk of a patient being re-identified. We therefore developed a framework for measuring the risk of re-identification associated with textual data releases.

Methods

We apply the proposed evaluation framework to a data set from the University of Michigan Medical School. Our risk assessment results are then compared with those that would be obtained using a typical contemporary micro-average evaluation of recall in order to illustrate the difference between the proposed evaluation framework and the current baseline method.

Results

We demonstrate how this framework compares against common measures of the re-identification risk associated with an automated text de-identification process. For the probability of re-identification using our evaluation framework we obtained a mean value for direct identifiers of 0.0074 and a mean value for quasi-identifiers of 0.0022. The 95% confidence interval for these estimates were below the relevant thresholds. The threshold for direct identifier risk was based on previously used approaches in the literature. The threshold for quasi-identifiers was determined based on the context of the data release following commonly used de-identification criteria for structured data.

Discussion

Our framework attempts to correct for poorly distributed evaluation corpora, accounts for the data release context, and avoids the often optimistic assumptions that are made using the more traditional evaluation approach. It therefore provides a more realistic estimate of the true probability of re-identification.

Conclusions

This framework should be used as a basis for computing re-identification risk in order to more realistically evaluate future text de-identification tools.

Lead Researchers

  • Khaled El Emam

    Senior Scientist, CHEO Research Institute Professor, Faculty of Medicine, University of Ottawa

Link to Publication

Researchers

  1. Khaled El Emam

    Senior Scientist, CHEO Research Institute Professor, Faculty of Medicine, University of Ottawa

    View Profile Email