Abstract
Background
Several acylcarnitines used as primary markers on dried blood filter papers (DBS) for newborn screening lack specificity and contribute to a higher false positive rate. The analysis of urine acylglycines is useful in the diagnosis of inborn errors of metabolism (IEM) including medium chain acyl-CoA dehydrogenase deficiency (MCADD), isovaleric acidemia, and beta-ketothiolase deficiency (BKTD). Currently, no method for analyzing acylglycines from DBS has been published.
Methods
Acylglycines were extracted from two 3.2 mm DBS punches and butylated using Butanol-HCl. Ultra Performance Liquid Chromatography (UPLC-MS/MS) with run time of 10 min permits resolution and quantitation of 15 acylglycines; including several isobaric. Method development was completed. Reference intervals (n = 573) were established for four birth weight groups. Furthermore, samples from patients with a confirmed IEM (n = 11), and false positive screens (n = 78) were analyzed to validate the interpretation obtained from the newly established reference intervals.
Results
Calibration curves were linear from 0.005 to 25.0 μM. Ion suppression was evaluated as minimal (2 to 10%). Samples from known patients were used to validate the reference intervals. For C5OH-related disorders, tiglylglycine (TG), TG/acetylglycine (AG) ratio, 3methylcrotonylglycine (3MCG) and 3MCG/AG ratio increased specificity. Propionylglycine (PG) and PG/acetylglycine ratio were two discriminatory markers in the investigation of C3-related disorders. Hexanoylglycine (HG), octanoylglycine (OG), suberylglycine (SG), and the ratios HG/AG, OC/AG and SG/AG were excellent markers of MCADD deficiency.
Conclusion
This method shows potential application as a second tier screen in order to reduce the false positive rate for a number of IEM targeted by newborn screening.
Researchers
-
Nathalie Lepage
Investigator, CHEO Research Institute